• 基于交流采样的电网电压智能监测仪的设计 (2)———基于交流采样的电网电压智能监测仪的设计 (2)

    2.3 系统线路布局
      
      图2为系统线路布局示意图。PCB板按信号流程布局,信号由机箱后面板输入,经过电压采样、模拟开关、采样保持和A/D转换后将输入的模拟信号变为数字信号。图2中的虚线部分是模拟电路。


      
      A/D转换后的数字信号输入MCU处理,MCU控制时钟、存储器件、显示模块操作和接口电路部分为纯数字电路。仪表与PC机接口在机箱后面板,而显示及键盘操作在机箱前面板。
      
      要特别注意对电源的处理,数字电路的电源会干扰模拟电路,从而使测量误差增大。模拟电源均增加了电感和电容滤波,信号地和电源地分开,连接时用电感滤波。通过PCB板的合理布局及电源电路的特别处理,可降低电源和信号干扰,减少测量误差。
      
      3 系统软件设计
      
      整个系统软件设计流程如图3所示。

    由离散化公式可知,根据一个周期内不同时刻的电压采样值及采样点数可计算出电压的有效值。根据周期T,选择适当的采样次数N,以确定采样时间间隔。由于AT89C51的主频为11.059 2MHz和AD574的转换速度为35μs,并考虑到电力参数精度要求,采样周期定为312.5μs,即每个周期内采样64点。另外,阻抗匹配网络的输入电压与输出电压比为所以阻抗匹配网络输出端的电压为:


      
      式中,un为第n时刻的瞬时采样电压。
      
      则所测电压为:


      
      根据式(3),可计算出被测信号电压,从而可统计出每天的电压合格时间。
      
      4 结束语
      
      该系统是基于交流采样设计的电力参数监测仪器。通过简单改变,测量电流、功率等电网参数,所有结果可在VFD上显示。该系统具有结构简单、成本低廉等优点。在数据处理、转换等方面,具有实时性好、系统抗干扰能力强、可扩展性好等特点,易于在类似的丁业以及民用的测控系统推广使用。

     
     
    网站首页  |  关于我们  |  联系我们  |  广告服务  |  版权隐私  |  友情链接  |  站点导航