滤波器  仿真  嵌入式  雷达  测量  数据采集  虚拟现实  测试  仪器  激光 
 
 
技术首页计 算 机嵌 入 式军用仿真测控测试信息安全通信指挥电源技术仪器仪表综合技术
 

11. 声发射和小波包分解技术在刀具磨损状态中的应用

2006-04-11 《中国测试技术》杂志社csjs 分享

谢秀娴,付攀,曹伟青 (西南交通大学,四川 成都 610031)   摘要:随着现代加工工业的发展,对刀具磨损的监测在保障生产安全和产品质量中发挥着越来越重要的作用。声发射技术是刀具磨损监测的一种新方法。在车削加工过程中采集声发射信号,用声发射信号对刀具磨损状态进行识别。利用小波包分解技术对信号进行分析,得到有效的特征量作为BP神经网络的输入样本,并对网络进行学习训练,完成对刀具磨损状态的有效识别。   关键词:刀具磨损;声发射;小波包分析;神经网络   中图分类号:TP206+.1 文献标识码:A 文章编号:1672-4984(2006)02-0040-03   Acoustic emission and wavelet analysis-based estimation of tool wear   XIE Xiu-xian,FU Pan,CAO Wei-qing (Southwest Jiaotong University, Chengdu 610031,China)   Abstract:Accompanied with the development of modern machining industry, tool wear monitoring becomes more and more important. Acoustic Emission (AE) is a useful and effective technique in tool wear monitoring. This paper uses Daubechies Wavelet to analyze AE signal and select features of the tools. The selected features are then considered as inputs to BP neural network to complete recognition of the status of the cutting tool.   Key words:Tool wear; Acoustic emission; Wavelet analysis; Neural network


 
 
 
 
热门产品
 
 
推荐论文
推荐厂商
 
中国军工网首页 | 关于我们 | 联系方式 | 网站地图 | 广告服务 | 会员注册 | 友情链接
中国军工网  版权所有